Мировой рынок
|
https://nimo.ru/news/world/dva-urozhaya-razom-rossiya-i-kitaj-sozdali-novuyu-metodiku-risovodstva/600505/
|
Методику интеллектуального контроля рисоводства, основанную на спутниковом наблюдении, создали ученые Самарского университета совместно с коллегами из Китая. По словам авторов, разработка позволяет повышать и прогнозировать урожайность, оценивать здоровье растений, выбирать оптимальные участки для посадок. Результаты опубликованы в журнале Advances in Space Research.
Мультиспектральная спутниковая съемка, как объяснили специалисты, позволяет точно определять минеральный состав почвы, режим освещенности и увлажнения на любой территории. Сегодня активно развиваются системы интеллектуального земледелия, способные с помощью этой информации оптимизировать полевые работы и повысить урожайность.
Специалисты Самарского национального исследовательского университета имени С.П. Королева совместно с китайскими коллегами разработали новую методику «умного» рисоводства, основанную на анализе мультиспектральных данных. По словам авторов, разработка позволяет прогнозировать урожайность, определять оптимальные режимы удобрения и орошения, а также дает ряд других возможностей.
«Главный наш результат – новый вегетационный индекс оценки спектрограмм, повышающий точность анализа. Благодаря ему можно детально контролировать протекание жизненного цикла растений, что позволит, например, в некоторых случаях добиться двух урожаев там, где раньше собирали только один», – рассказала автор исследования, доцент кафедры технической кибернетики Самарского университета Комаль Кумари.
Кроме того, по словам ученых, методика позволяет оценивать уровень здоровья растений и подбирать земли, наиболее подходящие для выращивания риса. Преимущество разработки перед аналогами, как сообщили авторы, в повышенной точности определения этапов жизненного цикла растений и более корректной оценке урожайности.
«Для вычисления вегетационного индекса и анализа спектрограмм с его помощью мы применили инструменты, основанные на машинном обучении», – отметил доцент кафедры технической кибернетики Самарского университета Рустам Парингер.
В дальнейшем ученые планируют адаптировать предложенную методику для работы с другими сельскохозяйственными культурами, а также разработать систему рекомендаций для агрохозяйств по повышению эффективности землепользования с опорой на данные спектральной съемки.
Исследование проводилось совместно со специалистами Китайского университета наук о земле и Гонконгского политехнического университета.